Recently, special service company's sales department service dispatching room dispatched someone to accompany the personnel of Shengli Oilfield Refruy Petroleum Equipment Co., Ltd. to learn about the site visits of various oil production plants in Dongying area for CNHTC special vehicles. A blended powder of tungsten carbide and Metal Alloy Powder can be used for laser cladding, a process used to deposit a layer of material onto a substrate using a laser beam. This blended powder is typically used as a feedstock material for laser cladding applications where high wear resistance and hardness are required. WC Blend,Blended Powder,High Hardness Powder,Blended Coating Powder Luoyang Golden Egret Geotools Co., Ltd , https://www.xtchvaf.com
The on-site visit to the owner, the team captain, and the relevant person in charge of the oil production plant, etc., gave a detailed understanding of the use of special vehicles of China National Heavy Duty Truck and opinions and suggestions in various aspects. Each oil refinery gave a high evaluation of the vehicle performance of CNHTC. Said that the special vehicle product has enough power, stable performance, and good service, and is very satisfied with the quality of the product and after-sales service.
Tungsten carbide is a hard and wear-resistant material that is commonly used in cutting tools, mining equipment, and other high-wear applications. It has excellent thermal conductivity and high melting point, making it suitable for laser cladding processes.
Metal alloy powders, on the other hand, are often added to the Tungsten Carbide Powder to enhance certain properties or tailor the characteristics of the final cladding layer. These metal alloys can include nickel, cobalt, chromium, or other elements, depending on the specific requirements of the application.
The blended powder is typically prepared by mixing the tungsten carbide and metal alloy powders in the desired ratio. This mixture is then fed into a laser cladding system, where it is melted using a high-power laser beam. The molten powder is rapidly solidified onto the substrate, forming a dense and wear-resistant cladding layer.
The resulting cladding layer can have excellent hardness, wear resistance, and thermal conductivity, making it suitable for various applications such as tooling, wear parts, and surface protection. The specific properties of the cladding layer can be adjusted by varying the composition and ratio of the tungsten carbide and metal alloy powders in the blend.
Overall, the blended powder of tungsten carbide and metal alloy powder offers a versatile and customizable solution for laser cladding applications, providing enhanced wear resistance, hardness, and other desired properties to the final cladding layer.